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Expressions are developed for the deformation-induced changes in polarizability in terms of funda- 
mental frequency shifts and oscillator strength changes using the Lorentz model. The peaks in the 
absorption spectrum of the alkali halides are identified with exciton transitions associated with the 
conduction and valence band levels following recent band structure calculations. The large dispersion 
of piezo-optic coefficients near the absorption edge in KBr and KI is ascribed to the first low lying 
exciton peak, which is associated with the transition Fs--F + at K=0 in the Brillouin zone. The 
piezo-optic data are used to evaluate the deformation potential constants of the valence band at K = 0 
for KBr and KI. 

Introduction 

Cubic crystals are isotropic in their optical properties. 
The index of refraction is one such property and is 
determined by the electronic polarizability of the 
atoms which is a function of the optical frequency and 
increases with increasing frequency as the absorption 
region of the solid is approached. The absorption lines 
of this region result from electronic excitations (transi- 
tions). A detailed study of the position and intensities 
of these lines in alkali halides has been carried out by 
a number of workers (Hilsch & Pohl, 1930; Schneider 
& O'Bryan, 1937; Eby, Teegarden & Dutton, 1959; 
Teegarden & Baldini, 1967). 

An isotropic stress deforms a solid without altering 
its symmetry. The deformation causes a shift in the 
position and a change in the intensity of the absorp- 
tion lines, thus altering the electronic polarizability of 
the solid. Deformation due to a uniaxial stress has a 
similar effect and in addition may split some of the 
lines. Under uniaxial stress each split component con- 
tributes to the electronic polarizability. If the resultant 
polarizabilities for light polarized in directions parallel 
and perpendicular to the stress are not equal, piezo- 
birefringence will result. The correspondence between 
the nature of the absorption-peak splitting and the 
piezo-birefringence in its neighbourhood, first pointed 
out by Kaplyanskii & Lozovskaya (1966), has since 
been confirmed in several semiconductors (Ge: Riskaer 
& Balslev, 1966; ZnSe: Dubenskii, Kaplyanskii & 
Lozovskaya, 1967; GaAs: Feldman & Horowitz, 1968). 

From a knowledge of the energy bands of the solid 
and the deformation-induced changes in them an esti- 
mate can be made of the magnitude of the piezo- 
birefringence. Riskaer & Balslev (1966) have explained 
the dispersion of birefringence near the interband edge 
of Ge in terms of the known deformation potential 
constants of the valence band at K=0.  Conversely, ex- 
perimental data on piezo-birefringence in the wave- 

length region close to an absorption line may be used 
to evaluate the deformation-induced shift and splitting 
of the energy level involved in that transition. In this 
paper the determination of the deformation potential 
constants of the valence band at K = 0  in KBr and K1 
using the piezo-birefringence data of part I (Rahman 
& Iyengar, 1970) will be discussed. 

The absorption spectrum and deformation potential 
constants 

Beyond the absorption edge in alkali halides there 
exists an absorption region characterized by well- 
marked peaks where the electronic excitation may be 
identified with exciton transitions (Phillips, 1964). 
Recent band-structure studies (see Knox & Teegarden, 
1968) provide a sound basis for assigning the transi- 
tions to energy levels at appropriate points in the Bril- 
louin zone (BZ). The first peak close to the absorption 
edge is unambiguously assigned to an exciton associated 
with the highest valence band F~- and the lowest con- 
duction level F6 +, at K = 0  in the BZ. [For the assign- 
ments of the remaining peaks, see Teegarden & Baldini 
(1967).] The discussion in this paper will be confined 
mainly to the first exciton peak. 

The valence band has p-like symmetry with a total 
angular momentum quantum number j = 3  and the 
conduction band F6 + is s-like with J=½. According 
to Kleiner & Roth (1959) a uniaxial strain parallel to 
[100] or [ I l l ]  splits the F~-level into two sublevels 
characterized by magnetic quantum numbers Mj  = + 
and M j =  + ½ respectively. The conduction level is not 
split but its energy is shifted. The energy spacing 2e0 
between the two sublevels M j  = +-} and M j - -  + ½, is 
given by 

2 e 0 = ~ - . D , . e  for e[[[100] } 
2 e o = ~ . D ~ , . e  for e [ l [ l l l ]  (1) 

and the shift of the centre of gravity of the split va- 
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lence levels with reference to the conduction level is 
given by 

fiEg=(D 5 -  D~) . dr~v, (2) 

where D, and D~, are a measure of the energy changes 
of the valence band for uniaxial strains parallel to 
[100] and [111] and D5 and D~ describe the changes in 
the conduction and valence band energies due to vol- 
ume strain dv/v. 

In the interband approximation of Kleiner & Roth 
the splitting and the shift of the centre of gravity of 
the exciton peak are also given by expressions (1) 
and (2). 

The strain-polarizability coefficients and 
the Lorentz model 

In the undeformed state, the refractive index of the 
solid, n, is a function of its density 0 and its polar- 
izability ~: 

n=n(~, cO. (3) 

Differentiating expression (3) and using the well-known 
Lorentz-Lorenz formula for the refractive index to 

evaluate the derivatives (c~)  and (On) , o n e  

arrives at the following: 

where dn is the change in the refractive index due to a 
strain e, 

L = (n 2 - 1) (n 2 + 2)/6n 

and 
d(x 

2 -  
0 c . e  

is the strain-polarizability coefficient. 
The changes in the refractive index dn j, and dnj_ for 

light polarized parallel and perpendicular to the strain 
axis, can be written in terms of the corresponding 
strain-polarizability coefficients, 2 ~ and 21, so that the 
piezo-birefrigence is given by 

fin 
- ( n , t - n _ O / e = L ( 2 a - 2 ± ) .  (5) 

e 

One can now treat the solid as an assembly of oscil- 
lators, with fundamental frequencies v, and oscillator 
strengths J~, according to the classical theory of Lo- 
rentz, and express the polarizability c~(v) for the fre- 
quency v of the incident radiation as 

o~(v) = • ~ vl~ 
• 1 )  i - -  

where C is a constant. 
For a single oscillator, of frequency v0, the Lorent- 

zian expression yields, on differentiation 

2@) = N -  K(v) . M ,  (6) 
where 

2@)= d~__, N -  dfo , M -  dvo , K(v)=--2v~ 
0~. e J0. e v0. e Vo 2 - v  2 '  

v0 = the fundamental frequency and f0 = the strength of 
the oscillator. 

Expressions for the strain-optical coefficients in 
terms of deformation potential constants 

The strain-induced frequency shifts dr0 of the Lorent- 
zian oscillators may now be correlated with the energy 
changes in the associated exciton transitions. Each one 
of the two split components of the exciton peak will 
contribute to the strain-polarizability coefficients 2jj 
and 2± in the deformed state. These contributions will 
be governed by selection rules for the transitions in 
polarized light from the split valence levels with M j  = 
+3 or M j =  + ½ to the exciton level (J=½). The rules 
for these energy levels have been worked out (see Kap- 
iyanskii, 1964; Riskaer & Balslev, 1966). Riskaer & 
Balslev have given normalized matrix element coeffi- 
cients (rn) determining the intensities of transitions for 
light polarized parallel and perpendicular to the strain. 
Using these coefficients, the contribution of the split 
exciton peaks to the strain-polarizability 2 ~j and 2j_ can 
be written: 

[2,]r=m~?.  23/2 +ml,/2 • 2~/2 / 
[21_]F=m~ 2 2 3 / 2 + m ~ 2  21/2 . , (7) 

where 23/2 and 21/2 are the strain-polarizability coeffi- 
cients for the split exciton peaks due to transitions 
from the Ma = _+ 3 and Ma = _+ ½ valence levels. The 
superscripts indicate the valence level and the sub- 
scripts, the polarization of light. The subscript F to 
the strain-polarizability coefficients denotes the con- 
tribution of the F~-F6 + exciton. The m values as 
given by Riskaer & Balslev are: 

/ T / 3 ( 2 : 0 ,  /T / l l (2=l ,  D?3J2:3  , Dl72~--- 1 , 

With substitution of these values, expressions (7) re- 
duce to 

[2"]r=21/2 } 
[xA~:~ .  (23/2 +k .  2~/~) . (8) 

and [2, - 2 j r  = - ¼. (23/2- 21/2) 

Using equation (6) 23/2 and 2~/2 can be expressed in 
terms of the relative oscillator strength and fundamen- 
tal frequency changes: 

[2  II - -  '~'J_]F 

= -~[(N3/2- N,/2)- X(O (M3/2- M1/2)]. (9) 

Assuming that for positive values o f /9 ,  and D~, the 
energy of the Ma = + ] level is greater than that of the 
Ma= +½ level for a positive (i.e. extensional) strain 
(Hensel & Feher, 1963), the relative changes in the 
fundamental frequency can be written 
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f E~ + eo 
M3/2-  f e g - e o  . M'/2= - F~o. e ' (10) 

Eo . e ' 

where E0 is the energy of the exciton peak in the un- 
deformed state. Using equations (8), (9), (10), (1) and 
(2) one obtains 

K(v) 
[2'L-2±]~°=¼(N'/z-N3/2) Eo " Du 

K(v) D, u (11) 
[ ~ ' t , - ~ ± ] ~ ' = ¼ ( N 1 / z - N 3 1 z )  Eo " 

K(v) (D~a - D~) 
[2,, + 22±]r=-~(Nl/z- N3/E) Eo " 

where the superscripts 100 and 111 refer to the strain 
directions [100] and [111] respectively, and in the third 
equation 2, and 2j_ refer to the cases of strain parallel 
to [100] or [111]. 

Using equations (5) and (11) and the well-known 
relations between piezo-birefringence and the strain- 
optical coefficients (Nye, 1957) the following expres- 
sions are obtained: 

( fn)~90 = n3 ] 
2 (Pl l  -P12) = ¼L(N3/2- N1/2) 

L .  K(v) 
+ . . . . .  • Du  

E0 

n 3 L .  K(v) 
( f n ) p l  = - 2  (2p44)= 3 L ( N 3 / 2 -  N1/2) + O'~ 

E0 " 

(fin)~-= n3 ( p 1 , + 2 p , 2 ) = L -  L 
2 3 ~-  (N1/2 + N3/2) 

L .  K(v) 
+ -----~o-- (D~-  DYl) 

0 2 )  

where (fn)~9 ° and (fn)p I are the piezo-birefringences 
contributed by the F 8 - F  + exciton for strains parallel 
to [100] and [111] respectively, for a compressive strain, 
and the contribution to the change in refractive index 
for isotropic strains is (fn)~-. 

R e s u l t s  

Fig. 1 shows the (2 t~-2_0 versus K(v) curves for KBr 
and KI. In evaluating K(v) the wavelengths as given 
by Hilsch & Pohl (1930) for the first low-energy ex- 
citon peaks for KBr and KI, viz. 187m/~ and 219m/z re- 
spectively, at room temperature, have been used. The 
curves tend to become linear for large values of K(v), 
indicating that the first peak plays a major part in 
determining the birefringence [el. equation (11)]. The 
deformation potential constants D u and D~, for KBr 
and KI were evaluated from the linear parts of the 
curves. The constant (DS-D~) was similarly evaluated 
from n3/2 (pll+2p12) versus L .  K(v) curves (L has 
negligible dispersion in this wavelength region). The 
results are given in Table 1. 

Table 1. Deformation potential constants o f  
the F 8 valence band at K = 0 in KBr and KI 

Units: eV per unit strain. 

Crystal Du Du' Da c -  Dav 
KBr - 0.133 + 0.344 - 0"066 
KI -0 .209  +0"137 -0 .084  

D i s c u s s i o n  

(1) The signs of the deformation potential constants 
D u and D~, determine the arrangement of the polarized 
split-exciton peaks. A positive constant would mean 
that the energy of the M j  = + ½ valence level is higher 
than that the M j  = + ~z level, in the case of a compres- 
sive strain. The energy of transition from the M j  = + ½ 
level [active for light polarized parallel to the strain, 
equation (8)] is hence lower than the transition energy 
from the level M j =  +3/2. For a positive deforma- 
tion potential constant, therefore, the low energy com- 
ponent of the split exciton peak will be active in light 
polarized parallel to the strain. As discussed by Kap- 
lyanskii & Lozovskaya (1966), this results in a pos- 
itive piezo-birefrigence and a 'normal' dispersion 

( d (gin)<0) The reverse is true when the deforma- 
-8-2 . 

tion potential constant is negative: close to the exciton 
peak (gin) is negative and its dispersion is 'anomalous'. 
The above discussion is supported by the following 
expressions obtained from equation (12): 

L 
(fn)v--'v°= + Eo " K(v) . D 

d ( f n ) = _ [  L dK(v)[ 
d2- E0 " d2 . D ,  

where D is the relevent deformation potential con- 
, (dK(v)~ 

stant, Du or D u. \ d2 ] hasanega t ive  sign. 

The signs of the deformation potential constants 
given in Table 1 are consistent with the above dis- 
cussion. 

It may be pointed out that D u and D u have different 
signs, giving rise to 'anomalous' dispersion of piezo- 
birefrigence for strain parallel to [100], and 'normal' 
dispersion for strain parallel to [111] for KBr and KI. 
This is in contrast to observations, near the band edge, 
in the semiconductors Ge (Riskaer & Balslev, 1966), 
GaAs (Feldman & Horowitz, 1968) and ZnSe (Duben- 
skii et al., 1967), where both D u and D~, are positive 
and the dispersion of piezo-birefringence near the band 
edge is 'normal' for both [100] and [11 l] directions of 
strain. 

Laiho & Korpela (1968) have studied the piezo- 
optic birefringence of Rb and Cs halides near the ab- 
sorption edge. Rb halides behave very much like K 
halides, while for the Cs halides, the behaviour is just 

A C 26A - 5 



dEg] 
20 and 900°K. Using the value o f D S - D ~  = dv/v] 

from Table 1, and the thermal expansion coefficient 
of KI (Krishnan, 1958), the stress-induced part of the 
energy shift was calculated as - 0 . 1 0 x  10 -4 eV.°K -x. 
Hence the pure temperature effect for the first peak is 
- 8 . 4 x  10 -4 eV.°K -x. This shows that the electron- 
phonon interaction is quite large for states near the 
valence and conduction band edges in KI. 

d d (~n) 111 is (On) 100 is positive and ~-~- the reverse" ~ -  

negative. This difference may be attributed to the sym- 
metry character of the excitons at low energies. The 
first low energy exciton in K and Rb halides is asso- 
ciated with a p-like valence level and s-like conduction 
level (s-exciton). At slightly higher energies, excitons 
associated with p-like valence levels and d-like conduc- 
tion levels are found (d-excitons). It is suggested that 
the d-excitons, which are very close to the absorption 
edge in Cs halides (Teegarden & Baldini, 1967) have 
deformation potential constants with signs opposite to 
the corresponding constants of the s-excitons, giving 
rise to a piezo-optic behaviour opposite to that found 
in K and Rb halides. 

(2) The existence of the d-excitons at higher energies 
also explains the sign reversal of piezo-birefrigence in 
K and Rb halides, as the contribution from these 
d-excitons may eclipse that due to the low energy 
s-excitons at longer wavelengths. Experiments on NaI 
could serve as a check on this line of reasoning, for the 
d-excitons in NaI (if they exist at all) must be at much 
higher energies (>  10 eV, Kunz, 1966) and sign rever- 
sals of piezo-birefringence may not occur in the near 
ultraviolet or the visible region. 

(3) The temperature dependence of the first low 
energy exciton peak in KI has been studied by several 
workers (see Roessler & Walker, 1967). The energy 
shift is - 8 -5  × 10 -4 eV.°K -1, which is linear between 
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Fig. 1. Strain-polarizability coefficients versus K(v)= 2vo2](vo 2 -  v2), for KBr and KI. (2' -2~) for strain parallel to [100]: 1-KBr, 
2-KI; (2,,-2±) for strain parallel to [111]" 3-KBr, 4-KI. 
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Lattice Parameters and Thermal Expansion of Zinc Telluride and Mercury Selenide 
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The lattice parameters of zinc telluride and mercury selenide were measured with a Unicam 19 cm high- 
temperature powder camera; the following equations represent the results: ZnTe, at = 6"1016 + 54.63 
x 10-6t+ 6.82 x 10-9t2+ 5.28 x 10-12t3; HgSe, at= 6.0854+28.61 x 10-6t+ 4.93 x 10-9t2+ 3"74 x 10-12t3. 
The expressions for thermal expansion coefficients are also given. 

Introduction 

Previous work on the microscopic thermal expansion 
of zinc telluride and mercury selenide has not been 
very extensive. Novikova & Abrikosov (1963) deter- 
mined the macroscopic thermal expansion of zinc tel- 
luride (sphalerite type structure) from 20 to 340°K 
with a silica dilatometer. They showed that the thermal 
expansion, ~, changes sign at 46 °K. Zhdansova, Lukina 
& Novikova (1966) measured the coefficient of thermal 
expansion of mercury selenide in the temperature range 
20 ° to 500°K with a quartz type of dilatometer. The 
microscopic data of thermal expansion of zinc telluride 
at elevated temperatures have been published by Hol- 
land & Beck (1968) who determined the lattice par- 
ameters without the use of any graphical or analytical 
methods, which certainly gives better results. In the 
present investigations we have used a 19 cm Unicam 
High-Temperature Powder Camera. The lattice par- 
ameters were calculated by Cohen's (1936) analytical 
method with Nelson & Riley's (1945) extrapolation 
function. 

Experimental 

For diffraction work, fine quartz capillaries of inner 
diameter 0.3 mm were chosen. At each temperature 
the photographs were taken three times and care was 
taken to reproduce the same temperature within + 2 °C. 
The methods of calibration of the thermocouple and 

* Present address: Department of Earth and Planetary 
Sciences, Massachusetts Institute of Technology, Cambridge, 
Mass. 02139, U.S.A. 

evaluation of lattice parameters and thermal expansion 
coefficients were the same as those described by Singh 
(1968). 

Results and discussion 

Zinc telluride 
Ultra-pure zinc telluride was annealed at 256 °C for 

four hours and the well-resolved lines corresponding 
to reflexions 711,642, and 731 (Cu Kc~ radiation) were 
used for the derivation of the lattice parameters. These 
are tabulated in the first column of Table 1 and are 
expressed by the parabolic equation: 

at=6.1016+ 54.63 × 10-6t 
+6.82 × 10-9t2+ 5.28 × 10-12t 3 , 

where at is the lattice parameter in/~, at t °C. The ex- 
pression for the thermal expansion coefficient at is 
given by: 

at =8.95 × 10-6+2.24 × 10-9t +2.60 × 10-12t2. 

Table 1. Lattice parameters and thermal expansion 
coefficients of  zinc telluride 

Temper- 
ature Lattice parameter, a(A) e x 106 
(°C) Observed Calculated (°C-1) 

35 6.1035 6"1035 9"03 
103 6"1073 6"1073 9"21 
167 6"1109 6"1109 9"40 
256 6"1161 6"1161 9"70 
352 6.1218 6.1219 10.06 
445 6"1277 6"1278 10.46 

A C 2 6 A  - 5* 


